EverythingOnConstruction - Ask. Build. Learn together. Logo

Questions in mathematics

[Solved] Determine any data values that are missing from the table, assuming that the data represent a linear function. \begin{tabular}{|l|l|} \hline$x$ & $y$ \\ \hline 1 & 2 \\ \hline 2 & 6 \\ \hline 4 & \\ \hline \end{tabular} A. 2 B. 10 C. 14 D. 16

[Solved] Use the values in the table to determine the slope. [tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex] | x | y | |---|---| | -4 | 19 | | -2 | 16 | | 0 | 13 | | 2 | 10 | | 4 | 7 | A. none B. [tex]\frac{3}{2}[/tex] C. 0 D. [tex]-\frac{3}{2}[/tex]

[Solved] Find the 10th term of the geometric sequence $3, 15, 75, \ldots$

[Solved] What are the solutions of the equation [tex]$4 x^2+3 x=24-x$[/tex]?

[Solved] What property was used on $14 k+2(3 k+5)-5=10$ to obtain $14 k+6 k+10-5=10 ?$

[Solved] Consider the function [tex]f(x)=\left\{\begin{array}{ll}x^2-5 x & \text { if } x\ \textless \ 3 \\ 7 x-4 & \text { if } x \geq 3\end{array}\right.[/tex]. Evaluate [tex]\lim _{x \rightarrow 3^{-}} f(x)[/tex] and [tex]\lim _{x \rightarrow 3^{+}} f(x)[/tex]. A. [tex]\lim _{x \rightarrow 3^{-}} f(x)=-6[/tex] [tex]\lim _{x \rightarrow 3^{+}} f(x)=-6[/tex] B. [tex]\lim _{x \rightarrow 3^{-}} f(x)=-6[/tex] [tex]\lim _{x \rightarrow 3^{+}} f(x)=17[/tex] C. [tex]\lim _{x \rightarrow 3^{-}} f(x)=17[/tex] [tex]\lim _{x \rightarrow 3^{+}} f(x)=-6[/tex] D. [tex]\lim _{x \rightarrow 3^{-}} f(x)=17[/tex] [tex]\lim _{x \rightarrow 3^{+}} f(x)=17[/tex]

[Solved] Which functions are odd? Choose two correct answers. [tex]f(x)=4 x+9[/tex] [tex]f(x)=\frac{1}{x}[/tex] [tex]f(x)=x^3-x^2[/tex] [tex]f(x)=x^5-3 x^3+2 x[/tex]

[Solved] Let [tex]f(t)=2-3 t^2[/tex]. Evaluate [tex]f(t+1)[/tex]

[Solved] Study the solutions of the three equations on the right. Then, complete the statements below. There are two real solutions if the radicand is $\square$ There is one real solution if the radicand is $\square$ There are no real solutions if the radicand is $\square$ 1. $y=-16 x^2+32 x-10$ $x=\frac{-32 \pm \sqrt{384}}{-32}$ 2. $y=4 x^2+12 x+9$ $x=\frac{-12 \pm \sqrt{0}}{8}$ 3. $y=3 x^2-5 x+4$ $x=\frac{5 \pm \sqrt{-23}}{6}$

[Solved] 4) [tex]$\left(2^{-4}\right)^{-3}$[/tex]